
Test Automation

PN 915-2612-01 Rev F August 2010 i

Black Book
Edition 10

Test Automation

http://www.ixiacom.com/blackbook August 2010

http://blackbook.ixiacom.com/

Test Automation

PN 915-2612-01 Rev F August 2010 iii

Your feedback is welcome

Our goal in the preparation of this Black Book was to create high-value, high-quality content.

Your feedback is an important ingredient that will help guide our future books.

If you have any comments regarding how we could improve the quality of this book, or

suggestions for topics to be included in future Black Books, contact us at

ProductMgmtBooklets@ixiacom.com.

Your feedback is greatly appreciated!

Copyright © 2014 Ixia. All rights reserved.

This publication may not be copied, in whole or in part, without Ixia’s consent.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. Government is

subject to the restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and

Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Ixia, the Ixia logo, and all Ixia brand names and product names in this document are either

trademarks or registered trademarks of Ixia in the United States and/or other countries. All other

trademarks belong to their respective owners. The information herein is furnished for

informational use only, is subject to change by Ixia without notice, and should not be construed

as a commitment by Ixia. Ixia assumes no responsibility or liability for any errors or inaccuracies

contained in this publication.

mailto:ProductMgmtBooklets@ixiacom.com

Test Automation

PN 915-2612-01 Rev F August 2010 v

Contents

How to Read this Book .. vii

Dear Reader .. viii

Introduction .. 1

Test Case: DUT CLI Automation by Using Test Composer .. 3

Test Case: Ixia Traffic Generator Automation by Using Test Composer25

Test Case: Leveraging Test Automation in a Vendor Selection Process45

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process55

Appendix A: Layer 2-3 Feature Test Automation Cookbook ..65

Appendix B: Layer 4-7 Applications Automation Cookbook ...73

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook ...79

Contact Ixia ...85

Test Automation

PN 915-2612-01 Rev F August 2010 vii

How to Read this Book

The book is structured as several standalone sections that discuss test methodologies by type.

Every section starts by introducing the reader to relevant information from a technology and

testing perspective.

Each test case has the following organization structure:

Overview Provides background information specific to the test

case.

Objective Describes the goal of the test.

Setup An illustration of the test configuration highlighting the

test ports, simulated elements and other details.

Step-by-Step Instructions Detailed configuration procedures using Ixia test

equipment and applications.

Test Variables A summary of the key test parameters that affect the

test’s performance and scale. These can be modified to

construct other tests.

Results Analysis Provides the background useful for test result analysis,

explaining the metrics and providing examples of

expected results.

Troubleshooting and

Diagnostics

Provides guidance on how to troubleshoot common

issues.

Conclusions Summarizes the result of the test.

Typographic Conventions
In this document, the following conventions are used to indicate items that are selected or typed

by you:

 Bold items are those that you select or click on. It is also used to indicate text found on

the current GUI screen.

 Italicized items are those that you type.

Test Automation

PN 915-2612-01 Rev F August 2010 viii

Dear Reader

Ixia’s Black Books include a number of IP and wireless test methodologies that will help you become

familiar with new technologies and the key testing issues associated with them.

The Black Books can be considered primers on technology and testing. They include test methodologies

that can be used to verify device and system functionality and performance. The methodologies are

universally applicable to any test equipment. Step by step instructions using Ixia’s test platform and

applications are used to demonstrate the test methodology.

This tenth edition of the black books includes twenty two volumes covering some key technologies and

test methodologies:

Volume 1 – Higher Speed Ethernet

Volume 2 – QoS Validation

Volume 3 – Advanced MPLS

Volume 4 – LTE Evolved Packet Core

Volume 5 – Application Delivery

Volume 6 – Voice over IP

Volume 7 – Converged Data Center

Volume 8 – Test Automation

Volume 9 – Converged Network Adapters

Volume 10 – Carrier Ethernet

Volume 11 – Ethernet Synchronization

Volume 12 – IPv6 Transition Technologies

Volume 13 – Video over IP

Volume 14 – Network Security

Volume 15 – MPLS-TP

Volume 16 – Ultra Low Latency (ULL) Testing

Volume 17 – Impairments

Volume 18 – LTE Access

Volume 19 – 802.11ac Wi-Fi Benchmarking

Volume 20 – SDN/OpenFlow

Volume 21 – Network Convergence Testing

Volume 22 – Testing Contact Centers

A soft copy of each of the chapters of the books and the associated test configurations are available on

Ixia’s Black Book website at http://www.ixiacom.com/blackbook. Registration is required to access this

section of the Web site.

At Ixia, we know that the networking industry is constantly moving; we aim to be your technology partner

through these ebbs and flows. We hope this Black Book series provides valuable insight into the evolution

of our industry as it applies to test and measurement. Keep testing hard.

Errol Ginsberg, Acting CEO

http://www.ixiacom.com/blackbook

Test Automation

PN 915-2612-01 Rev F August 2010 ix

Test Automation

 Automation Methodologies

This document outlines methodologies and best practices for the automation of key components
in an end-to-end test automation solution for IP systems. Following the methodologies in this
guide will help to accelerate the testing cycle and increase test application engineer productivity
and lab test tool equipment utilization.

Test Automation

PN 915-2612-01 Rev F August 2010 1

Introduction

Test automation is a key ingredient to bringing switching and routing equipment to market

quickly with high quality, minimal expense, and interoperability. Test automation makes it

possible to perform far more tests than would be possible with manual testing. All aspects of the

testing lifecycle, including feature test, system test, and regression test, can benefit from the

enhanced consistency and increased speed derived from test automation.

The payoff for using test automation is substantial.

Network equipment manufacturers (NEMs) can use automation to:

 Automate regression tests for developers to ensure that nightly software builds haven’t

created more problems than they’ve solved.

 Combine tests from multiple vendors, platforms and applications during system

integration.

 Automate regression tests for device and system quality assurance to insure that

integrated systems continue to work together.

 Use regressions to ensure patches and updates haven’t affected operation or

performance.

 Track the result of regressions run over time to ensure that a project is making

continuous progress toward zero bugs and optimal performance.

Service providers and enterprises can use automation to:

 Automate device qualification tests for both initial deployment and upgrades.

 Ensure that patches and updates haven’t affected operation or performance.

 Ensure interoperability between current and prospective devices.

 Run daily tests to ensure that operation and performance haven’t been affected by

network, file system, or hacker activity.

 Reduce the effort required to create complex, real-world test cases.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 3

Test Case: DUT CLI Automation by Using Test Composer

Overview

This tutorial will focus on the Test Composer advanced script authoring tool available in Test

Conductor. Through the course of this exercise, you will use Test Composer to capture the

interactions with a DUT over a Telnet session and record the CLI commands issued during that

session. You will also learn how these recorded commands then become part of an automated

test.

The tutorial follows a phased approach to create this script so that you can first learn the basics

of the process, and then progress to add more script complexity until you achieve the final

version. This approach to script development is the best way to approach all the scripting

challenges because it makes it easier to develop bug-free tests in the shortest amount of time.

Objective

The ultimate goal of this tutorial is to show you to create a reusable procedure that can be

shared across tests by many test engineers.

Setup

A Test Conductor Console is used to author a Test Composer script to automate a DUT’s

configuration. The Test Conductor Console communicates to the Test Conductor Server to store

the test and to drive the execution of the test in unattended mode when it is included in a

regression using the Test Conductor Regression Manager.

Figure 1. Composer Telnet CLI session logical diagram

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 4

Step-by-Step Instructions

1. Launch the application from the Test Conductor icon. Test Composer is a test authoring

feature that is part of the Test Conductor suite.

The GUI console window will appear. Test Composer is a new configuration tool available

in the bottom left corner of the screen.

2. In this example, you will be starting with a blank test. Click the Test Composer icon. This

is the entry point into the Test Composer script authoring module.

Figure 2. Launching Composer from the Test Conductor GUI console

3. Click the New Procedure icon to create the new procedure that will contain your script.

Procedures are reusable blocks of scripting that can be used inside of tests or other

procedures.

Figure 3. Creating a new Composer procedure

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 5

4. Set the properties of the procedure. You can do this now or later as part of saving your

work. Change the Name field value to DUT-Setup. Leave the remaining options on this

view with their default values.

Figure 4. Setting the Properties

5. Click Show Sessions Console to make the Capture pane viewable.

6. (Optional) Change the Name field value to DUT. You may accept the default but we

recommend that you specify a meaningful name so that the test is more understandable,

and in cases where you need to have multiple sessions, it is easier to track what is

happening when the names reflect the device being controlled.

7. Select Telnet from the Type list. This selects a connection type that matches the

connection type for the device. Different devices use different session types, and each

session type has a different set of input parameters.

8. Enter the IP Address 169.254.0.2 for your DUT in the IP Address field. This step is

required for a Telnet session, but the IP Address will differ for each device connected.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 6

9. Leave the default of 23 for the port. The only time you have to change the port number is

when the device is using some non-standard port assignment. If your attempts to connect

to the device time out, double-check the IP address and port to make sure they match with

the device configuration.

Figure 5. Creating a new Telnet session using the Session Manager

10. Click Connect to establish an active Telnet session to the DUT. This initializes the

connection to the device. After you have connected, you should see a prompt from the

device. However, sometimes the device needs to be ’awakened.’ If you do not see a

prompt, try clicking in the session window and pressing the ENTER key.

Type directly into the Capture Window to issue commands directly to the device. These

commands will be automatically captured as steps in the test editor.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 7

11. Begin entering the commands you typically enter to configure the device. In the example,

the first set of commands is required to log on to the device. This is an example – the

details of the text will differ depending on what login information is required by the DUT.

Password: lab

>enable

Password: lab

configure t

Figure 6. Capturing a DUT login sequence using Session Manager

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 8

12. After you are past the first stage of logging on, you are ready to begin configuring the

device. For example, type the following commands into the Capture Window to enable an

interface on the device. The details of the text will differ depending on the type of device.

(config)# interface Ethernet 1/1

(config-if)# ip address 20.0.1.2 255.255.255.0

(config-if)# no shutdown

(config-if)# exit

(config-)# exit

Figure 7. Capturing a DUT interface configuration sequence using Session Manager

13. Commands can be used to configure the device or to get information back from the device.

For example, you can use a status command like the one shown next to get information

about the state of the configuration of the device. Type the commands into the Capture

Window to generate a status response from the device. Note that the details of the text will

differ depending on the type of device. (Figure 8)

show ip interface Ethernet 1/1

--More-- <Spacebar>

14. Not only is the command being captured, but so is the response. To get the response back

in the script where it can be analyzed, you have to give the response a name. Specifically,

you need to provide the name of the variable that will store the response. Click the line with

the show command you just entered, and then click the Return Variable field.

15. This part of the command is where the name of variable goes. In this example, the name of

the variable to use is ’interface.’ Enter the value interface for the Return Variable.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 9

16. Press the ENTER key to accept.

Figure 8. Assigning a return variable to an Execute command

17. To see what response was captured for a command, click the Command Response tab to

see the Local Step Response for the first execution of the show ip interface Ethernet 1/1

command. The first time a command is executed, the response is captured. After that, the

response is not captured. The captured response is used as a template to be compared to

responses from the subsequent executions of the step. If the response is wrongly

captured, or the command is modified in such a way as to change the fundamental

structure of the response, you can delete the current capture, and then run the step again,

which will capture a new version of the response.

Figure 9. Viewing a free format text response in the Command Response tab

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 10

18. Sometimes, you do not want the whole response, but just some parts of it. Extracting the

parts of interest is done using the Response Template Editor.Click Edit to launch the

Response Template Editor. After the editor is open, you can identify which parts to extract

and what to label the extracted parts.

19. Different kinds of responses have different structures to them. Some responses have a

static structure, while others have a dynamic structure. Using the right method of extraction

is key to the repeatability of the test. In this example, you will use the regular expression

form of extraction. Click the Regex target icon to create a Free Format Target. This is

used to match a text variable against a unique string pattern.

20. (Optional) A meaningful label for the target makes it easier to read and understand the

test. To give the target a proper label, change the Target Name property to something that

reflects the content of the target. In this example, you can use the word MATCH. The

default name may also be used.

21. Different regular expressions will find different parts of the response. A variety of sample

regular expressions, called expression templates are provided to make it easier to extract

the parts of the response you want. Change the Regular expression template property to

C1 [0-9a-zA-Z]*. The C1 property is used to identify the key to finding the text of interest

and the string of text following it describes the pattern of characters that represent the part

of the response that you want to extract. In this example, it indicates any length and mix of

characters (both upper and lower case) and numbers.

22. The expression templates are sometimes close to what you need, but not quite. You can

change the expression to fit exactly what you need. In this example, replace only the plus

sign (+) with an asterisk (*) in the group (?<md>[\s]+) in the pattern defined for the regular

expression. This step is required in this example, but is optional in general.

23. Change the value of the C1 property to Ethernet because in this response, the word

Ethernet represents the start of the text to extract. This is done when a portion of the text

response is a fixed string of text (for example, Ethernet) that always remains the same in

the pattern.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 11

24. Click OK to save the response mapping. The result will also show in the Command

Response window. This saves the mapping.

Figure 10. Matching free format text strings in the Response Map Editor

25. Not all the commands that are in your procedure have to be created by capturing them in

the session window. Some commands are entered directly into the script. In this example,

you will be adding a command to display to the screen the value that is extracted from the

response. Highlight the line that you were just working on and click Insert Step Below to

create a new line. This manually inserts a step and the type of command inserted is the

same type as the one last inserted. If no command has been manually inserted yet, by

default, a Comment command is inserted.

26. Click the Command Type list to change the Command Type to Trace.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 12

27. You can modify the command string directly by clicking in the Command String field and

entering text directly. To make it easier to edit the command string, you can use the

variable text completion feature to change the value of the command string to

${interface.MATCH}. This specifies an output argument for the Trace command.

Figure 11. Using Variables in commands

Figure 12. Logging information messages in the Execution Messages tab

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 13

28. After you are done configuring the DUT, you need to close the session. Click Disconnect

to close the Telnet session. This will automatically create a line with a Command Type of

StopSession. This step will disconnect the session from the DUT whenever it is executed.

Figure 13. Inserting an Automatic StopSession step on session disconnect

29. To replay your captured steps, you can highlight one or more of the steps and press play.

Highlight line #1 through line #13.

30. Click Play to replay the captured CLI commands to the DUT. This replays captured

commands back to a session.

31. As the commands execute, status messages will be appear in the Execution Messages

window. This will verify that replayed commands are executing correctly.

Figure 14. Logging execution information messages in the Execution Errors tab

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 14

The sequence of steps that have been created so far are a good start to create a useful

procedure intended to configure a DUT. However, it is not very portable. The DUT’s address,

for example, is hard-coded in the procedure. To make the procedure more reusable across tests

and DUTs, it would be better if the address could be configurable when the procedure is called

by some test. The next few steps show how to parameterize the procedure for the address of

the DUT and the list of ports to configure.

1. To add a new parameter to the procedure, click Parameters to open the Parameters

window.

2. Click Add Parameter to create a new row for first input parameter. This will be used to add

an input variable to the list.

3. Change the Parameter Name to DUT_IP. Set the Default Value to 169.254.0.2. This is a

common global variable needed for this example. Default values are useful when you are

debugging the procedure because they allow you to run the procedure without having to

call the procedure from an external procedure and pass in the values for the parameters

being used.

4. (Optional) A good practice is to include a description for the parameter. This helps when

someone else wants to use your procedure. When they make a call to your procedure and

open the parameter list, they will see your descriptions and know what values they need to

provide without having to open the actual procedure to understand how the parameter is

used.

5. Click Add Parameter to create a new row for the second input parameter.

6. Change the Parameter Name to PORT_LIST.

7. Set the Default Value to the space-separated port list 1 2. This is good practice to initialize

all global variables to known good values.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 15

8. Click OK to accept your two input parameters and save the new global variables.

Figure 15. Adding input parameters for variable fields in Execute commands

9. Click line #1 and click the Command String field to change the IP Address from a hard-

coded value to the variable $DUT_IP. This changes a fixed value to a dynamic value.

Figure 16. Parameterization of device IP address in StartSession

10. Because your test is currently designed to configure only one interface, it is not very

flexible. Some tests may need to configure multiple interfaces. By taking the commands

used to configure one interface and insert them into a loop, the test can configure any

number of interfaces. And, because the test has an input parameter that takes a list of

interfaces, the test using your procedure can decide which interfaces need to be

configured by simply passing them to the procedure. Highlight line #5 through line #12so

that they can be enclosed inside of a loop.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 16

11. Click the Place Inside For icon. Use the list to choose between different loop types for

insertion. To make the test easier to read, you will see with steps indent inside a new For

loop beginning at line #5 and ending at line #14. This encloses your steps inside the loop

that will configure each interface in the list. The same set of lines will be executed many

times with slightly different values.

Figure 17. Encapsulating repeating Execute commands in control flow logic

12. Click the Command String list to open the For loop expression builder. Enter PORT for

the value of the Assign to variable field. This changes the name of the variable that will be

used to parameterize your commands .

13. Select SET from the Loop type list. This tells the command that it will be using a list of

values instead of a range of values. Sometimes, this is called a ForEach style of loop.

14. Click Select Variable and check Use variable to specify PORT_LIST as the variable for

the Values field. This step is required whenever a dynamic list is needed as opposed to a

fixed set of values.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 17

15. Click Check to accept your changes. This step is required to save changes made to the

loop expression.

Figure 18. Iteration over a fixed set of values contained in a variable

16. Change the hard-coded port value in line #7 to use the parameter specified in the FOR

command so that the Command String value is interface Ethernet 1/$PORT. This step is

an example. Changing hard-coded values to variables is the same process regardless of

the command.

17. Change the hard-coded port value in line #12 to a parameter just like the previous step so

that the command looks like show ip interface Ethernet 1/$PORT.

Figure 19. Parameterization of variable portions of an Execute command

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 18

18. Change the third octet value in the IP Address in line #8 so it looks like ip address

20.0.${PORT}.2 255.255.255.0.

Note that braces are needed in this case so that the interpreter can distinguish the

parameter as a Tcl variable when dots are part of the command string value.

Figure 20. Parameterization of variable portions of an Execute command

19. Highlight line #1 through line #14. Click Play to send the CLI commands to the DUT and

replay these captured steps back to the session.

20. As the commands execute, status messages will appear in the Execution Messages

window. Note that as the commands run, the steps are repeated for each item in the

PORT_LIST variable.

Figure 21. Logging messages generated upon iterative execution of control flow logic

21. (Optional) In some situations, you may want to send commands to the DUT without having

the commands captured in the test. It is not a problem if unwanted commands are

captured because you can delete them at any time. But if you want to avoid having to

delete unwanted commands, click Capture Off to toggle capture mode to off as shown in

Figure 22. This allows you to experiment with commands without recording the session.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 19

22. Click Disconnect to close the Telnet session; this time no step will be created. This

disconnects the session. Since this is the second time this session has been disconnected,

doing so with Capture Off ensures that no additional StopSession command is added to

the script.

Figure 22. Disabling capture of DUT command line interface text

Sometimes, there are commands you do not want to execute, but you also do not want to

remove them because they will be used again later. You can exclude a step from running by

marking it as excluded.

1. Click line #15. Right-click to open the context menu and select Exclude to disable the

execution of StopSession command. The Command Type fields for excluded commands

are grayed out.

Figure 23. Excluding a StopSession command from the list of active commands

2. Highlight line #1 through line #15. Click Play to send the CLI commands to the DUT.

3. As the commands execute, status messages will appear in the Execution Messages

window. Only commands marked as Include will be executed, therefore your session

will NOT be automatically disconnected.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 20

Figure 24. Logging execution information messages in the Execution Errors tab

4. Click line #15. Right-click to open the context menu and select Include to re-enable the

execution of the StopSession command.

5. Click Play to send the StopSession command that will terminate the session. This allows

script execution to be broken up into pieces while in the editor.

Figure 25. Logging session disconnect messages in the Execution Errors tab

6. Click Save to save the final version of your DUT CLI Telnet script.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 21

In some cases, you may want to use an existing test as the starting point for a new procedure.

You may also want to start organizing your procedures in some logical set of folders.

1. The easiest way to do this is to open the procedure that you want to copy and choose

Save As. In the Save As window, click New Folder and create a new folder named DUT

under the Procedures folder.

Figure 26. Creating a container folder for storing DUT procedures as resources

2. If you have not set the name of your procedure using the Properties, you can specify a

procedure Name of DUT-Setup and then place this new version under the DUT folder

under Procedures that you created in the previous step.

Figure 27. Saving a DUT procedure as a reusable resource

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 22

Sometimes, you may prefer to make a copy of a procedure in your test rather than just calling

the procedure remotely. In this case, the easiest way to include a procedure in a new test is to

import the procedure into your test.

1. Start with a new test. Click the New Composer Test icon to create a new Composer test.

2. (Optional) Change the Name field value to DUT-Lab. It is recommended that a meaningful

name be used. Leave the remaining options on this view at their default values. The

remaining options are typically left at their defaults.

3. Click Import Procedure to import a procedure that was saved as a shared resource.

4. Select the DUT-Setup procedure you created previously and click OK to continue. This

step completes the import process.

Figure 28. Browsing for DUT procedure resources from Import Procedure menu

5. Click Append Last Step to place a step at the end of the main body and before any

procedures. This inserts a line at the end of a script’s main body.

6. Click the Command Type list to change the Command Type to RunProcedure. Select

the DUT-Setup as the Local Procedure.

Test Case: DUT CLI Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 23

7. Click the Command String list to open the argument builder. This allows you to specify

the arguments to a procedure. Specify 169.254.0.2 as the first argument, and then the

space-separated value 3 4 as the second argument in the Input Arguments list. This

example shows that the value of one or more variables may be changed when the

procedure is called. The set of device ports to be configured are arguments to the

procedure, and thus may be set to a different set of ports.

Figure 29. Inputting the values for the parameters of a procedure

8. Click OK to accept your changes. This step is required to save all work.

Figure 30. RunProcedure call to execute a DUT setup command with arguments

9. Highlight line #1.

10. Click Play to send the CLI commands to the DUT.

11. As the commands execute, status messages will appear in the Execution Messages

window.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 25

Test Case: Ixia Traffic Generator Automation by Using Test Composer

Overview

This tutorial will focus on the Test Composer advanced script-authoring tool available in Test

Conductor. Through the course of this exercise, you will use Test Composer to author an

IxExplorer script. The tutorial follows a phased approach to creating this script so that you can

follow the process from the beginning, to adding more script complexity, to the final version.

Objective

The ultimate goal of this tutorial will be to apply the traffic configuration stored in a ScriptGen Tcl

file to a set of ports, which will automate the transmission of traffic as well as statistics

collection. The statistics can be used as final results, as well as for decision points during the

test, directing execution flow.

In the second portion of this tutorial, you will continue with the IxExplorer example, but making

the test more dynamic. You will add if-statements for decision making and loops for control

flow. Finally, you will create additional sessions to collect port logs and organize steps into

procedures.

Setup

A Test Conductor Console is used to author a Test Composer script that will automate

configuration commands of an Ixia traffic generator. The Test Conductor Console

communicates to the Test Conductor Server to store the test and to drive the execution of the

test in unattended mode when it is included in a regression using the Test Conductor

Regression Manager.

Figure 31. Composer Ixia Traffic Generator Session Logical Diagram

Test Conductor Console

Test Conductor Server

• IxExplorer™

Eth 1/1: 20.0.1.X/24

Eth 1/2: 20.0.2.X/24

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 26

Step-by-Step Instructions

1. Launch the application from the Test Conductor Icon. Test Composer is a module within

the Test Conductor suite.

The GUI Console window will appear. This is the client window where all interaction with

Test Conductor occurs.

2. In this example, you will be starting with a blank test. Click the Test Composer icon. This

is the entry point into the Test Composer script authoring module.

Figure 32. Launching Composer from within the Test Conductor GUI Console

3. Click the New Composer Test icon to create a test which will contain multiple procedures

as opposed to a single procedure.

4. (Optional) Change the Name field value to IxExplorer-Lab. It is recommended that a

meaningful name be chosen.

The remaining settings on this view are typically left at their default values.

Figure 33. Creating a new Composer test

5. Click Show Sessions Console to display the Capture pane.

6. Change the Name field value to XM2. Select IxExplorer from the Type list. This identifies

the session type for the type of device to be connected.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 27

7. Enter the IP Address or Hostname for your chassis in the Chassis field. This is required

for an IxExplorer chassis connection.

8. Enter the IDs of the two ports to which you will apply stream configuration into the Ports

field using (C.P1 C.P2) notation where C = card #, P1 = port1 #, P2 = port2 #. For

example: 1.1 1.2. This step is required as ports must be owned in order to completely

establish a session.

9. (Optional) Change the Login Name value to testconductor. It is considered good practice

to take ownership of ports with a unique name.

10. (Optional) Browse for the top level IxOS Path for the version of IxOS you are using. If no

IxOS version is selected, the connection will attempt to determine the default path. Keep in

mind that you may be using multi-version IxOS. Example: C:/Program

Files/Ixia/IxOS/5.20.401.68-EB. This choice is an example only and will differ depending

on which IxOS is installed on the client machine.

Figure 34. Connection parameters for an Ixia Traffic Generator session

11. Click the Connect icon to establish a new, active session to the Ixia Chassis Tcl Server.

The IxExplorer session will take ownership of the ports you provided and generate a

message in the Capture window indicating success or failure.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 28

12. In the Test Steps window, line #1 has been automatically created with a Command Type

of StartSession. Click Insert Step Below to create line #2.

Figure 35. Establishing an Ixia Traffic Generator session

13. Change the value of the Command Type to Execute.

14. Change the value of the Session column to XM2. Each Execute command must be

associated with a unique session ID.

15. Use the Command String list to select the ScriptGen Apply command. This is required

whenever an IxExplorer port configuration is to be loaded via Tcl.

16. Browse for the first of your chassis to populate the Chassis argument. Chassis is a

required argument for this command.

17. Browse for the first of your chassis ports to populate the Port argument. Port is a required

argument for this command.

18. Browse to populate the Filename argument. For example, browse to C:/ixexplorer-b2b-

scriptgen-port1.tcl. The Tcl file will differ depending on the contents of the file that

IxExplorer generated.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 29

19. The .tcl file contains the port configuration for the first port. Click Check when done with

line #2. This saves the values selected in the Command list wizard.

Figure 36. Creating a ScriptGen Apply command in the Composer editor

20. Highlight line #2. Click Copy and then click Paste to create line #3. This is required when

configuration is performed on a per port basis and serves as a short cut to creating a

command from scratch.

21. Click the Command String column to enter text edit mode. This allows you to enter text

directly without needing to browse. Change the Port argument to your second chassis

port. Similarly, change the Filename argument so that it points to your file; for example:

C:/ixexplorer-b2b-scriptgen-port2.tcl as shown in Figure 36. This applies a different

configuration file to a different port.

22. Press the Enter key to accept your text changes.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 30

23. Click the Save icon to save your progress.

Figure 37. Copying a ScriptGen Apply command and editing arguments inline

24. Click Insert Step Below to create line #4.

25. Click the Command String list to browse for the Stat Clear command. This ensures that

metric values are initialized when the test script executes.

26. Browse for both of your chassis ports to populate the Port argument. Port information is

required for this command.

27. Click Check to save selections from the Command list wizard.

Figure 38. Inserting a Stat Clear command using the Composer editor

28. Click Insert Step Below to create line #5.

29. Click the Command String list to browse for the Utility CheckLinkState command.

CheckLinkState is used to verify ports are up before proceeding.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 31

30. Browse for both your chassis ports to populate the Port argument. Port information is a

required argument for this command.

31. Click Check to accept.

Figure 39. Inserting a Utility CheckLinkState command using the Composer editor

32. Click Insert Step Below to create line #6.

33. Click the Command String list to browse for the Transmit Start command. This includes

a command to begin traffic streams.

34. Browse for both your chassis ports to populate the Port argument. Port information is a

required argument for this command.

35. Click Check to accept.

Figure 40. Inserting a Transmit Start command using the Composer editor

36. Click Insert Step Below to create line #7.

37. Click the Command Type list to change the Command Type to Assign.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 32

38. Click the Command String field to enter text

39. Enter the value 1 in the Command String. This assigns a value for the statement.

40. Click the Return Variable field to enter text.

41. Enter the value i for the variable. Its value is initialized to one.

Figure 41. Assigning a numeric value to a variable using the Composer editor

42. Click Insert Step Below to create line #8.

43. Click the Command Type list to change the command type to While. This selects a flow

control loop type. An EndWhile at line #9 will automatically be created to put a bound on

the loop scope.

44. Click the Command String list to open the Tcl expression builder. This allows you to use

the expression builder to assist in the creation of a loop expression.

45. Create the expression $i <= 3 to be evaluated during each iteration of the While loop. This

step is required although the details of the expression will differ depending on the goal of

the control flow being specified.

You may type the expression directly into the lower evaluation window if you are familiar

with Tcl syntax.

If not, you may double click on the variables listed in the Test Variables window as well as

the Operators list to help you build your expression. This step is recommended for users

that are new to loop expressions.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 33

46. Click Check to accept your changes.

Figure 42. Iterating while a variable value is less than a maximum number

47. Highlight line #9. Click Insert Step Above to insert a new step at line #9.

48. Click the Command Type list to change the Command Type to Sleep. This allows traffic

to continue for a fixed duration.

49. Edit the Seconds field of the Command String to the value of 10 to sleep for 10 seconds.

The Sleep command should be indented inside the While/EndWhile lines.

Figure 43. Inserting a Sleep command to paused for a fixed delay period

50. Highlight line #9. Click Insert Step Below to insert a new step at line #10.

51. Click the Command Type list to change the Command Type to TclEval. This step is

required in order to have a way to make sure the While loop will exit.

52. Click the Command String list to open the Tcl expression builder. This will provide

assistance for building a loop expression.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 34

53. Create the expression incr i to be evaluated as the last step of the While loop. This

increments the loop index by one.

You may type the expression directly into the bottom evaluation window if you are familiar

with Tcl syntax.

Otherwise you may double click on the variables listed in the Test Variables window or

choose the incr operator from the Available Commands list under the Variables and

Procedures heading in the Command Category list.

54. Click Check to accept your changes.

Figure 44. Incrementing a Tcl variable using the Composer editor

55. Highlight line #11. Click Insert Step Below to insert a new step at Line #12.

56. Change the value of the Command Type to Execute.

57. Change the value of the Session column to XM2. A session ID must match the command

to be executed.

58. Click the Command String list to browse for the Transmit Stop command. This step is

required to terminate the stream traffic.

59. Browse for the both of your chassis ports to populate the Port argument. Port information

is a required argument for this command.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 35

60. Click Check when done with line #12. This saves the changes made during edits in the

Command list wizard.

Figure 45. Inserting a Transmit Stop command using the Composer editor

61. Click Insert Step Below to insert a new step at Line #13.

62. Click the Command String list to browse for the Stat Get command. This is used to

collect one or more statistics from the count column in IxExplorer.

63. Browse for both of your chassis ports to populate the Port argument. Browse for the

framesReceived and framesSent statistics to populate the Stat argument. These

statistics are a common example of the types of statistics that are collected from an Ixia

port. This is an example only, but these statistics will be required in later steps to create

conditional statements.

64. Click Check when done with arguments for Line #13. This accepts changes made in the

Command list wizard.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 36

65. Enter the value statistics in the Return Variable column. This selects a container for the

statistics returned by a Stat Get command. The variable statistics will be populated with

the actual values from IxExplorer whenever the step is executed during Playback mode.

Figure 46. Inserting a Stat Get command with return variable using Composer editor

66. Click Insert Step Below to insert a new step at line #14.

67. Click the Command String list to browse for the Stat Get command. Browse for only the

first of your chassis ports to populate the Port argument. This is a convenient that you can

used to collect statistics for a single port or group of ports.

68. Browse for the framesReceived and framesSent statistics to populate the Stat argument.

A choice of statistics is a required argument for this command.

69. Click Check when done with arguments for line #14. This accepts changes made in the

Command list wizard.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 37

70. Enter the value statisticsPort1 for the Return Variable column. This establishes the

variable that will hold the collected. The variable statisticsPort1 is a convenient variable

for storing the results associated with just the first chassis port.

Figure 47. Inserting a Stat Get command for a single port using Composer editor

71. Click Copy and then Paste to insert a new step at line #15.

72. Edit the Command String text to change the Port argument to the second chassis port.

This allows this command to collect stats on a different port.

73. Edit the value of the Return Variable column to statisticsPort2. This creates a different

variable to contain the statistics for the second port.

The variable statisticsPort2 is a convenience for storing only the results associated with

just the second chassis port.

Figure 48. Copying a Stat Get command and modifying arguments inline

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 38

74. Highlight line #13 through line #15. This allows multiple lines to be replayed. Click Play to

send the Stat Get commands to the Ixia chassis, which will populate information in the

variables you created. Container variables will not hold any values or variable structure

unless the Stat Get commands are issued within an active session.

As the commands execute, status messages will appear in the Execution Errors window.

75. Remember to click Save periodically to save your work. This step is strongly

recommended so that work is captured on a regular basis in case there is a need to go

back to an earlier version.

76. Return variables that have not been fully populated will be colored red. You will see

corresponding error messages in the Validation Messages window.

Figure 49. Logging the executing of stat collection commands in Execution Errors tab

77. Click Insert Step Below to create line #16.

78. Click the Command Type list to change the Command Type to Assign. This is required

as the previous command was of a different type.

79. Click the Command String list to open the Tcl expression builder. This is used for

assistance in building a Tcl expression.

80. Create the expression ${statisticsPort1.framesSent} by expanding the statisticsPort1 tree

item under Test Variables and double-clicking the framesSent statistic. This provides you

the correct variable syntax.

81. Click Check to accept your changes.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 39

82. (Optional) Enter framesSentPort1 for the Return Variable. This defines a shorter name for

the variable.

Figure 50. Assigning a composite variable statistic to a new variable using Composer editor

83. Click Copy and then Paste to insert a new step at line #17.

84. Edit the Command String text to change the expression to ${statisticsPort2.framesSent} for

the second chassis port. This is required in order to collect the same statistic from a

different port.

85. (Optional) Edit the value of the Return Variable column to framesSentPort2. This defines

a shorter name for the variable.

Figure 51. Copying a variable assignment and modifying arguments in line

86. Highlight line #16 and line #17. Click Copy, highlight line #17 again, and then click Paste

to create line #18 and line #19. This step is required in order to paste a duplicate copy of

multiple lines into the same location.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 40

87. Edit Command String for Line #18 to change its value to

${statisticsPort1.framesReceived}.

88. Edit Return Variable for line #18 to change its value to framesReceivedPort1. This defines

a shorter name for a statistic.

89. Edit Command String for line #19 to change its value to ${statisticsPort2.framesReceived}.

This accesses a different stat on the second port.

90. Edit Return Variable for line #19 to change its value to framesReceivedPort2.

Figure 52. Copying multiple Assign statements at once and editing arguments of second copies

91. Click Insert Step Below to create line #20.

92. Click the Command Type list to change the Command Type to Trace. The last command

inserted was of a different type.

93. Click the Command String list to open the Tcl expression builder.

94. Create the expression Frames Sent P1: $framesSentPort1, Frames Received P1:

$framesReceivedPort1 by selecting the appropriate items under Test Variables and

adding the additional text needed for the debugging output message. The Trace must have

an argument string, although the argument string may contain any combination of variables

and text required for the message to be output.

95. Click Check to accept your changes. This saves changes made in the Command list

wizard.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 41

Figure 53. Inserting a debugging statement using Composer editor

96. Click Copy and then Paste to insert a new step at line #21.

97. Edit the Command String text to change the expression to reference the second port

Frames Sent P2: $framesSentPort2, Frames Received P2: $framesReceivedPort2. This

changes the output message to refer to values on the second port.

Figure 54. Copying a debugging statement and modifying arguments in Composer editor

98. Click Insert Step Below to create line #22.

99. Click the Command Type list to change the Command Type to Trace.

100. Edit the Command String text to Passed – this will be output as a debugging message.

This step is a convenience for the test reader, so that there is a clear message displayed

when a test is successful.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 42

Figure 55. Inserting a debugging statement using Composer editor

101. Click Files Catalog and then click Add File to create a new row. This is needed when the

test will access an input or output file. The file will be attached to the composer script.

102. Change the Type to Result. Enter C:/IxExplorer.csv for the File location. This output file is

an example and can be changed to reflect the specific test executed.

103. Click OK to accept file1 as the Composer Variable. This step accepts the default file

name, although it may be changed to a more meaningful name if desired. From this point

on the file will be referred to by its variable, rather than its absolute path.

104. Click Insert Step Below to create line #23. Click the Command Type list to change the

Command Type to WriteCSV. This step provides an automatic way of generating comma

separated values in an output file, consisting of variables created by the composer script.

105. Click the Command String list to open the argument builder. This provides assistance

with the variables that are available to be output by the composer script at this line in the

script.

106. Click Select Variable and check Use Variable to specify file1 as the File Name. Enter

$statistics as the Variable List argument. The file name and one or more variables are

required arguments of this command.

107. Click Check to save changes made in the Command list wizard.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 43

Figure 56. Inserting a WriteCSV command to output statistics using Composer editor

108. Click Disconnect to close the IxExplorer session, which will automatically create line #24

with the Command Type of StopSession. This terminates a session while generating a

stop command.

109. Make sure to click the Save icon to save this version of the IxExplorer script before

proceeding. This ensures that the composer script is syntactically valid before proceding to

the next round of debugging.

Figure 57. Inserting a StopSession command automatically upon session disconnect

110. Click Debug to switch to the Debugger.

111. (Optional) Click the Line # column next to line #6 and line #22 to add a breakpoint that will

pause execution at each of those lines. This marks clear exit points in the composer script

that are expected to be reached during execution.

You may add additional breakpoints to other lines where you wish to pause the execution

of your script.

Test Case: Ixia Traffic Generator Automation by Using Test Composer

PN 915-2612-01 Rev F August 2010 44

If you wish to disable a breakpoint, simply click on the Breakpoint icon. The icon will

appear as an empty circle, indicating that the breakpoint is present but disabled.

Figure 58. Inserting a breakpoint to pause execution of a command in Composer debugger

112. Click Play to start execution of the test. The test will execute until the first breakpoint is

reached.

113. Click Play again to continue execution to the next breakpoint and observe the effect in

IxExplorer where appropriate.

114. Make sure that you are able to reach the breakpoint associated with the Passed-Trace

message on line #22 before continuing further. This step validates that the execution of the

script in this example was successful. If you can successfully reach this breakpoint then

your script is working as expected.

115. Click Play to execute to the end of the script.

116. You may use the Global Output window to assist you in verifying the correct execution of

your script. Use this window for monitoring the real-time progress of a composer script and

viewing output messages from all sessions in one place.

Figure 59. Monitoring the execution of commands in the Composer debugger

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 45

Test Case: Leveraging Test Automation in a Vendor Selection

Process

Overview

A key requirement of an IP equipment vendor selection process is that the criteria applied are

consistent across individual test runs as well as across vendor implementations. An

organization seeking to select from a set of potential equipment vendors will be able to do so

with confidence by leveraging a consistent and repeatable automation scheme,

Objective

The goal of this methodology is to develop a repeatable process for the collection of the key IP

metrics needed to choose between multiple vendor offerings. The Ixia Test Composer test

authoring tool will be used to generate vendor specific procedures for configuring the device

under test (DUT) from each equipment manufacturer.

Setup

The script generated by Composer will be organized into high-level methods that correspond to

best practices. Traffic is injected into the DUT and statistics are retrieved for automated

success/failure analysis. The graphical script will be used by the Test Conductor Regression

Manager and Scheduler to runs the vendor selection process multiple times. Vendor A, B, and

C are to be evaluated using automation to guarantee fair, accurate, and repeatable results.

Figure 60. Vendor Selection Composer Methodology Logical Diagram

Test Conductor Console

Test Conductor Server

• IxExplorer™

• IxNetwork-
FT™

• IxLoad™

Eth 1/1: 20.0.1.X/24

Eth 1/2: 20.0.2.X/24

Device Session [Telnet]

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 46

Step-by-Step Instructions

1. Use the Composer Session Manager to log in to Vendor A’s device at the

enable/administrator level. Configure layer 2-3 and/or layer 4-7 interface properties such as

IP Address, VLANs, etc., to bring Vendor A’s test interfaces up to operational level.

2. Issue Vendor A’s device status commands to verify the operational status of the DUT in

preparation for its participation in the vendor selection process. The Composer will capture

the commands issued to Vendor A’s device, along with the status responses to those

commands.

3. For future automation purposes, identify the key values contained in the status messages

and use the Composer Command Response Map Editor to mark these values as being

associated with variables. These variables may be inspected during the execution of the

Composer script to test for correctness against the initial device setup.

4. Use Composer Control Flow Logic statements such as If, While, For, etc. to test the state

of the response variables. Test for valid start values. Start with the configuration of a small

number of interfaces before scaling up to the number of interfaces needed by the test traffic

portion of the vendor selection process.

5. Use the Composer Procedure Block to encapsulate the captured statements, responses,

variables and control flow logic into a reusable unit of device configuration for Vendor A.

Modify the DUT setup procedure body so that hard-coded values such as IP Addresses,

VLANS, etc. are variables recognized by the Composer.

6. Create Input Parameters with the same name as the variables you identified, so that the

DUT setup procedures can be executed against other Vendor A family devices that support

the same syntax, but may have different configuration values - such as test interface IP

Addresses.

7. Identify an output variable to indicate the overall success or failure of the Vendor A setup

process. This variable could be a zero/one for failure/success. It should be checked in the

vendor selection process script’s main body. If the vendor device has not been successfully

configured to an operational state needed by the selection process, then the script needs to

mark the vendor device as non-conformant to setup criteria. The script should mark its

overall state as inconclusive, as no valid testing determination can be made.

8. Use the Composer to create a Vendor B setup procedure with input parameters and

internal variables consistent with the Vendor A setup procedure. The configuration syntax

could be very different in structure, but since the two vendors are competing for the same

feature there should be enough commonality to identify the corresponding variable settings

on each vendor device. If there are differences in structure these can be handled through

input arguments, some of which can be ignored for one vendor or another.

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 47

Figure 61. Vendor device configuration organized into high level procedures with arguments

Think of this as an evolving process in which you are going to start with the vendor-specific

details of each device so as to initialize the DUT into the state needed by the vendor

selection process, using vendor-specific syntax. As you introduce other device vendors

into the vendor selection script, you may need to modify your assumptions about how a

vendor decided to implement a feature. Through this process you will discover the next

level of DUT setup abstraction.

9. Use the Composer to capture the configuration commands of Vendor C and parameterize

the input variables to be as consistent as possible with those of Vendor A and Vendor B.

Make sure to return a clear success or failure from the setup procedure as in the other two

cases, so that any vendors who fail to be conformant with the expected environment can be

identified at the start of the process, not the end.

10. Use what you have learned about the structure of the three Vendors to create a generic

VendorSelectionSetup procedure which corresponds to the generic interface you expect all

vendors to provide, regardless of the specific details of their syntax. This high-level method

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 48

can be implemented as a procedure that switches to the appropriate low level vendor setup

procedure based upon a selector such as device IP Address, for example.

11. Use the Composer to capture the Ixia traffic generator commands needed to inject the

vendor selection traffic pattern into the DUT. This corresponds to the main body of your

vendor selection test. Composer makes it possible to take a saved traffic generator port

configuration and apply it to a different set of ports. Just as was done for the DUT setup,

change the appropriate hard-coded values such as chassis card and port to parameters that

can be selected to match the current vendor under test by a selector such as DUT IP

Address.

Figure 62. Traffic Generator Procedure port selection based upon device input arguments

12. Encapsulate the Ixia traffic generator calls into a new procedure

VendorSelectionXmitAndVerify. The goal of this method is to execute the main body of

the vendor selection process and then, based upon the criteria defined for expected

behavior, declare the test a success or a failure. By creating a module procedure for the

traffic transmission and statistics collection process, different vendor selection criteria tests,

such as RFC 2544 style throughput, frame loss, and latency measurements can be

substituted in place of the default criteria.

13. Complete the end-to-end vendor verification process by using the Composer to construct

DUT cleanup procedures to return the vendor’s device back to the default “golden” state

prior to the execution of the DUT setup procedure. This ensures that the vendor device is

returned to a ready state when the Composer script is executed in an unattended fashion

through the Test Conductor Scheduler. The script may be used this way as part of a

regression series to obtain multiple data points for inclusion in the final results analysis.

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 49

14. Cycle through the vendor selection process for each of the vendors. This can be done by

changing the values of the Composer script Test Parameters or by extending your

verification with additional test control flow logic to cycle through the participating vendors

automatically for a sequencing solution that does not require any human intervention.

Figure 63. Vendor Selection script pass/fail criteria evaluates to a single high level success or failure

Test Variables

The test used for illustration purposes in the outlined automation methodology can be scaled up

in terms of the number of traffic ports used. The port configurations can be replaced with

alternate Ixia traffic generator configurations to match the specific traffic patterns required by the

organization conducting a vendor selection backoff.

Test Tool Variables

Table 1: Ixia traffic generator variables

Composer Variable Description

CHASSIS_IP Ixia chassis management IP address

C1.P1 Ixia traffic generator Card.Port ID for first test traffic interface

C2.P2 Ixia traffic generator Card.Port ID for second test traffic interface

P1.Tcl Ixia traffic generator port configuration for first test traffic interface

P2.Tcl Ixia traffic generator port configuration for second test traffic interface

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 50

BIT_RATE_P1 Input parameter for first device vendor test interface

BIT_RATE_P2 Input parameter for second device vendor test interface

DUT Test Variables

Table 2: Device under test variables

Composer Variable Description

VENDOR_A_IP Input parameter for first device vendor management IP address

VENDOR_B_IP Input parameter for second device vendor management IP address

VENDOR_C_IP Input parameter for third device vendor management IP address

DUT_IP IP address selector for choosing between vendor device procedures

VENDOR_A_IF Input parameter for first device vendor test interface

VENDOR_B_IF Input parameter for second device vendor test interface

VENDOR_C_IF Input parameter for third device vendor test interface

Results Analysis

Vendor selection process metrics within a Composer script are available for export into Test

Conductor test trend reports. Test trend reports can be used to generate charts of metric

values versus time. Figure 64 is an example of throughput versus test run start time as

measured over several execution runs of the Composer script.

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 51

Figure 64. Test Conductor Test Trend Report charting vendor throughput values against time

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 52

A vendor selection process often consists of many Composer scripts executed as part of a

Test Conductor regression. A regression trend report charts the overall health of a vendor

device as it compares the number of attempted test cases and the number of successfully

passed tests cases versus time.

Figure 65. Test Conductor regression trend report charting tests attempted and passed against time

Test Case: Leveraging Test Automation in a Vendor Selection Process

PN 915-2612-01 Rev F August 2010 53

Troubleshooting and Diagnostics

Table 3: Troubleshooting Tips

Issue Category Troubleshooting Solution

Variable $var undefined
on playback

Composer
Editor

Check that syntax of referenced variable is valid. Check
that variable exists in current scope. Check that variable
initialization has been highlighted and played at least
once prior to use.

Variable $var not updated
on playback

Composer
Editor

Click Reset TCL Interpreter button to clear variable state
Replay step that initializes the variable again to update to
current value.

Device command
response has changed
since first captured

Composer
Editor

Click Command Response Tab for the step whose
response you want to clear. Click the remove button in
the upper right of tab. Replay the step to capture the
current device response

Variables not listed in
Trend Report template

Composer
Editor

Check that variable listed in Composer Exported Stats
window and that it has been checked.

Error executing command Composer
Debugger

Set a breakpoint on failed execution step. Use
Expressions tab to print out, modify and test simple
expressions without leaving debugger

Conclusions

Test Composer provides an integrated development environment (IDE) for quality assurance

and other IP network test professionals. It is a graphic tool that constructs dynamic tests with

logic and flow control. This makes the process easier to design and implement.

Applying Test Composer scripts to the automated execution of a vendor selection process

yields a more repeatable and accurate set of results that can be used to make a fair,

empirically-based vendor selection.

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 55

Test Case: Leveraging SNMP Verification in an End-to-End

Automation Process

Overview

SNMP (Simple Network Management Protocol) is a structured data protocol that devices use for

configuration and transmitting alerts. SNMP integration into a testing methodology is need in

many facets of the end-to-end automation process. SNMP is used in the DUT setup phase to

set key configuration parameters with default values required by a testing phase. It is also used

to retrieve the DUT’s operational status in order to check that the device is ready to proceed

with the next phase of testing.

SNMP Get commands may be used throughout the test algorithm phase to monitor dynamic

DUT values to ensure that they are within acceptable tolerances. These include interface

metrics, CPU utilization, etc. In addition, SNMP includes Traps and Informs that may be

generated at any time. These notifications indicate normal operational events or more serious

error conditions. These conditions could either prevent successful test completion or otherwise

invalidate the results of a test.

In some test scenarios, the SNMP implementation itself may be the object of testing, rather than

being used as an agent for testing. As part of the DUT cleanup phase, the device is returned to

a known good state using Set commands to apply steady state values.

Objective

For this example, Composer will be used to configure SNMP access to a DUT and also to

generate traps as part of a traffic pattern test. Statistics will be collected from the DUT via

SNMP Get and SNMP Traps. These will be used in conditional logic flow statements to

determine if a particular throughput value measured on the test interfaces is acceptable. Failure

may be declared if the metrics collected through SNMP are found to be outside of acceptable

tolerances and/or inconsistent with metrics empirically observed by the traffic generator.

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 56

Setup

The Composer script generated will be organized into high-level methods that correspond to

best practices for SNMP DUT configuration and verification of asynchronous trap events. This

graphical script will then be used by the Test Conductor Regression Manager and Scheduler

to run the SNMP verification process multiple times in order to determine a clear, repeatable

pattern in the SNMP DUT verification process.

Figure 66. Composer Script SNMP Session Logical Diagram

Step by Step instructions

1. Use the Composer Session Manager to log in to the DUT. Enable test traffic interfaces,

clear statistics counters, and enable the SNMP daemon. Configure the community strings

that external hosts will use to access the DUT. Specify access permissions for external

hosts, including read-only or read/write access to those communities. Specify SNMP

protocol version and optional version 3 authentication information. These are common

configuration options across all SNMP devices.

2. Use the Composer Editor to encapsulate the DUT initialization process into a DUT-Setup

procedure that can be a used in other Composer scripts that require SNMP access to the

DUT. Identify portions of the configuration that can be extracted out as variables. These

variables typically correspond to some or all of the options used to initialize SNMP on the

DUT. The community string, access permissions, and version information are all potential

variables that can be passed into the DUT-Setup procedure.

Test Conductor

Console
Test Conductor

Server

 IxExplorer™

 IxNetwork-FT™

 IxLoad™

Eth 1/1: 20.0.1.X/24

Eth 1/2: 20.0.2.X/24

Device Session

[SNMP]

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 57

3. Use the SNMP Resource Manager to obtain a graphical view of available MIB

(Management Information Base) object trees that can be accessed via SNMP. Select MIBs

from the existing list or import custom enterprise MIBs. Use the Composer Session

Manager to establish an SNMP session with the DUT using the same protocol

configuration options that were applied on the DUT, such as SNMP community string,

protocol version, and access permissions.

4. Use the Composer Editor to encapsulate the SNMP session initialization process into an

SNMP-Setup procedure. This procedure will need to include input arguments for all of the

variable properties previously mentioned, so that this high-level method may be executed

against other devices in the same device family.

5. Use the Composer Editor to create an SNMP-Get procedure to retrieve OID (Object

Identifier) values from the DUT. Composer assists the script writer in the process of

specifying the list of OID values to retrieve by displaying a graphical view of the MIB

sources selected in the resource manager. The MIB source trees can be browsed to select

the OID values desired. Specify return variables to store the values returned by the DUT.

SNMP Get commands behave just like other statistics/values collection mechanisms in the

Composer. The return variables that are populated by the call to SNMP Get can be used

in control flow logic statements as well as in conditional statements to test against

expected values for a result of success or failure.

Figure 67. Composer SNMP Get procedure for collecting and logging OID values on DUT

6. Use the Composer Editor to create an SNMP-Set procedure to change OID values on the

DUT. Again, the Composer assists the script writer in the process of specifying the list of

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 58

OIDs to change. Use the MIB source tree browser to select desired OIDs and obtain meta-

data associated with the OIDs such as data type information.

7. Use the Composer Editor to create an SNMP-Trap procedure to catch both informational

and exceptional events that occur on the DUT, which can be collected while the device is

under load. This procedure will register specific SNMP OIDs to monitor. The events

generated for these OIDs will be collected into a trap queue for analysis by Composer.

Within this procedure, trap events are matched with corresponding actions depending on

the severity level of the trap event. Typical actions in response to a trap message include

ignoring the event, calling a procedure to process the event, or even terminating the entire

Composer script.

8. Use the Composer Debugger to actively monitor SNMP Trap events that are received

from a single or multiple sources. Composer provides simultaneous access to both

individual session output logs and aggregated output from all sessions. These are

gathered into a single view so you can conveniently correlate what is happening on

different devices as they generate SNMP events, comparing them to where the Ixia traffic

generator is in the current traffic pattern sequence.

Figure 68. Composer SNMP Setup procedure for initializing sessions with community strings,
versions, etc.

9. Use the Composer to capture the Ixia traffic generator commands needed to inject the

traffic pattern into the DUT. This corresponds to the main body of your test. Composer

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 59

makes it possible to take a saved traffic generator port configuration and apply it to a

different set of ports. Just as was done for the DUT setup, change appropriate hard-coded

values such as chassis card and port to parameters that can be selected to match with the

current vendor under test, using a selector such as DUT IP Address.

10. Encapsulate the Ixia traffic generator initialization calls into a new procedure named

TrafficSetup. The goal of this method is to load the traffic generator with the appropriate

port configuration onto ports, make them active, and reset metrics and counters prior to the

execution of the main test body.

11. Encapsulate the Ixia traffic generator execution calls into a new procedure named

Algorithm. This is the core of the traffic generation loop. By creating a module procedure for

the traffic transmission and statistics collection process, different vendor selection criteria

tests such as RFC 2544 style throughput, frame loss, and latency measurements can be

substituted in place of the default criteria. Calls to an SNMP Get procedure to retrieve

specific OID values are inserted at appropriate points in the algorithm. These values are

used for comparison against expected values that assist the decision to continue or stop

executing traffic, as well as for populating variables that will be used to generate output.

Figure 69. Composer script traffic algorithm body with periodic calls to SNMP procedure

12. Calls to the SNMP-Trap procedure are also executed in parallel with the Ixia traffic

generator traffic and capture events, since they occur asynchronously. The procedure also

assists in determining if the traffic loop should continue executing or if an exceptional event

has occurred. This may be a condition that cannot be ignored, requiring that the traffic must

terminate, and the test must be declared a failure.

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 60

13. Use the Composer to encapsulate the session resets and commands needed to return

each session into a Cleanup procedure. There should be Cleanup procedures for each

device session that resets the DUT, the Ixia traffic generator and any SNMP sessions that

are no longer being used at the end of the script.

Test Variables

The test used for illustration purposes in the outlined automation methodology can be scaled up

to increase the number of traffic ports used. The port configurations can be replaced with

alternate Ixia traffic generator configurations to match the specific traffic patterns required by the

organization conducting a vendor selection backoff. The choice of SNMP OIDs to use will vary

depending on which MIBs are used and which metrics are relevant to the traffic being executed.

Test Tool Variables

Table 2: Ixia Traffic Generator Variables

Composer Variable Description

CHASSIS_IP Ixia traffic generator management IP address

C1.P1 Ixia traffic generator Card.Port ID for first test traffic interface

C2.P2 Ixia traffic generator Card.Port ID for second test traffic interface

P1.Tcl Ixia traffic generator port configuration for first test traffic interface

P2.Tcl Ixia traffic generator port configuration for second test traffic interface

FRAMES_SENT_P1 Ixia traffic generator total packets transmitted on first traffic interface

FRAMES_SENT_P2 Ixia traffic generator total packets transmitted on second traffic interface

DUT Test Variables

Table 2: Device under test variables

Composer Variable Description

DUT_IP Device under test management IP address

COMMUNITY SNMP community string

VERSION SNMP protocol version

MIB_LIST MIB sources governing SNMP session

OID_LIST SNMP OID used as arguments to Gets and Sets

TRAP_IP SNMP trap host IP Address

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 61

ifInUcastPkts.OID_LIST SNMP OID names for total packets received on DUT interfaces

ifInUcastPkts.VALUE_LIST SNMP count values for total packets received on DUT interfaces

Results Analysis

A Composer script can be used to generate customer comma separated values (CSV) reports

showing the state of a device during the course of the test execution run. SNMP can be used

with the standard interface MIB called IF-MIB, to check the operational status of the test traffic

interfaces on the DUT using the ifOperStatus OID and their associated index numbers.

Figure 70. Composer CSV with interface operational status values collected via SNMP

SNMP OID values can be collected in a Composer session in parallel with another Composer

session that is generating traffic and collecting Ixia traffic generator statistics. These SNMP OID

values can be captured into a CSV file as well as used as values in an expression for a

conditional control flow statement such as If, Then, Else, etc. This allows SNMP counter values

retrieved from the DUT to be directly correlated with the statistics values observed by the Ixia

traffic generator test tool. SNMP can be used to retrieve traffic statistics from the point of view of

the DUT through SNMP OIDs such as ifInUcastPkts – the number of unicast packets received

on an interface. The OID ifInErrors provides the number of reception errors that occurred for

inbound traffic.

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 62

Figure 71. Composer CSV with interface counter metrics collected via SNMP

Troubleshooting and Diagnostics

Table 3: Troubleshooting Tips

Issue Category Troubleshooting Solution

Variable $var undefined
on playback

Composer
Editor

Check that syntax of referenced variable is valid. Check
that variable exists in current scope. Check that variable
initialization has been highlighted and played at least
once prior to use.

Variable $var not updated
on playback

Composer
Editor

Click Reset TCL Interpreter button to clear variable state
Replay step that initializes the variable again to update to
current value.

Device command
response has changed
since first captured

Composer
Editor

Click Command Response Tab for the step whose
response you want to clear. Click the remove button in
the upper right of tab. Replay the step to capture the
current device response

Variables not listed in
Trend Report template

Composer
Editor

Check that variable listed in Composer Exported Stats
window and that it has been checked.

Error executing command Composer
Debugger

Set a breakpoint on failed execution step. Use
Expressions tab to print out, modify and test simple
expressions without leaving debugger

Conclusions

Test Composer provides an integrated development environment (IDE) for quality assurance

and other IP network test professionals. It is a graphic tool that constructs dynamic tests with

logic and flow control. This makes the process easier to design and implement.

Applying Test Composer scripts to the automated configuration and event monitoring of SNMP

enabled devices greatly increases the confidence that the devices not only achieves the primary

throughput, latency, etc. objectives of the traffic plane testing, but that they do so while staying

Test Case: Leveraging SNMP Verification in an End-to-End Automation Process

PN 915-2612-01 Rev F August 2010 63

within control plane and operating system configuration tolerance levels. Combining SNMP

monitoring with other aspects of a Composer script helps to reduce the likelihood that an

exceptional event will occur when the device is deployed operationally in the field.

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 65

Appendix A: Layer 2-3 Feature Test Automation Cookbook

1. Launch the application from the Test Conductor Icon. The GUI Console window will be

displayed. Test Composer is a configuration tool available in the bottom left corner of the

screen. Click Test Composer to create a new Composer test. Click New Composer

Test. Change the Name field value to IxNetwork-FT-Lab. Leave the remaining options on

this view with their default values. You have now created a new composer test.

2. Click Steps, and then click Show Sessions Console to display the Capture pane.

Change the Name field value to XM2. Select IxNetwork-FT from the Type list. Enter the IP

Address or Hostname for your chassis in the Chassis field. Enter the IDs of two ports to

which you will apply stream configuration into the Ports field using (C.P1 C.P2) notation

where C = card #, P1 = port1 #, P2 = port2 #. For example: (1.3 1.4). Change the Login

Name value to testconductor. Browse for the top level IxOS Path for the version of IxOS

you are using. Keep in mind that you may be using multi-version IxOS. Example:

C:/Program Files/Ixia/IxOS/5.20.401.68-EB. You have now entered all the information

required before establishing a feature test session.

3. Click Connect to establish an active session to the Ixia Chassis Tcl Server. The session

will take ownership of the ports you provided and generate a message in the capture

window indicating success or failure. Line #1 has been automatically created In the Test

Steps window with a Command Type of StartSession. You are now actively connected

to a feature test session.

4. Click Insert Step Below to create line #2. Change the value of the Command Type to

Execute. Change the value of the Session column to XM2. Click the Command String

list to browse for the Import Port command. Browse for the first of your chassis ports to

populate the Port argument. Browse for C:/ /ixnetwork-ft-b2b-export-port1.prt to populate

the Filename argument. The .prt file contains the port configuration for the first port. Click

Check when done with line #2. Upon completing this step you will have created a script

command for loading a port configuration on the first port.

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 66

5. Highlight line #2. Click Copy and then click Paste to create line #3. Click in the Command

String column to enter text directly. Change the Port argument to your second chassis

port. Similarly, change the Filename argument so that it points to the file C:/ixnetwork-ft-

b2b-export-port2.prt. Press the Enter key to accept your text changes. Click Save to save

your progress. Upon completing this step you will have created a script command for

loading a different port configuration on a second port.

Figure 72. Composer OSPF Feature Test Script with IxNetwork-FT session commands

6. Click Insert Step Below to create line #4. Click the Command String list to browse for the

Stat Clear command. Browse for both your chassis ports to populate the Port argument.

Click Check to accept. Highlight line #2 through line #3 and click Play to push the

configuration to the ports. Upon completing this step the port configurations will now be

active on ports on the Ixia chassis.

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 67

7. Highlight line #4 and click Insert Step Below to create line #5. Click the Command String

list to browse for the Protocol ProtocolStart command. Browse for both your chassis

ports to populate the Port argument. Browse for the protocol OSPF to populate the

Protocol argument. Click Check to accept. Upon completion of this step you will have

created a script command for establishing OSPF adjacencies.

8. Highlight line #5. Click Insert Step Below to insert a new step at line #6. Click the

Command Type list to change the Command Type to Sleep. Edit the Minutes field of the

Command String to the value of 1 to sleep for 1 minute. Upon completion of this step you

will have created a script command for waiting long enough for OSPF adjacencies to have

been established to the FULL state.

9. Click Insert Step Below to insert a new step at line #7. Click the Command String list to

browse for the Protocol GetStat command. Browse for your first chassis port to populate

the Port argument. Browse for the ospfFullNeighbors and ospfTotalSessions statistics

to populate the Stats argument. Upon completion of this step you will have created a script

command for determining the number of active OSPF neighbors and the number of

neighbors who successfully reached the FULL state on the first port.

10. Click Check when done with arguments for line #7. Enter the value protoStatsPort1 for the

Return Variable column. The variable protoStatsPort1 will be populated with the actual

values whenever the step is executed during Playback mode. Upon completion of this

step you will have specified a container variable to store the OSPF statistics collected for

the first port.

11. Click Copy and then Paste to insert a new step at line #8. Edit the Command String text

to change the Port argument to the second chassis port. Edit the value of the Return

Variable column to protoStatsPort2. The variable protoStatsPort2 is a convenience

variable for storing only the results associated with the second chassis port. Upon

completion of this step you will have specified a container variable to store the OSPF

statistics collected for a second port.

12. Highlight line #7 through line #8. Click Play to send the Protocol GetStat commands to

the Ixia chassis and populate information into the variables you created. As the commands

execute, status messages will be appear in the Execution Errors window. Remember to

click Save periodically to save your work. Upon completion of this step you will have

collected the current values for OSPF protocol stats and defined the variable structure

needed to contain those statistics.

13. Click Insert Step Below to create line #9. Click the Command Type list to change the

Command Type to Assign. Click the Command String list to open the Tcl expression

builder. Create the expression [GetValue protoStatsPort1 ospfFullNeighbors] by expanding

the protoStatsPort1 tree item under Test Variables and double-click the

ospfFullNeighbors stat and the Port filter. Choose the GetValue operator from the

Available Commands list under the Variable Access heading in the Command

Category list. The brackets [] can be selected from Available Operators. Click Check to

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 68

accept your changes. Enter fullNbrsPort1 for the Return Variable. Upon completion of this

step you will have created a variable containing the number of neighbors on the first port

that have reached the FULL state.

14. Click Copy and then Paste to insert a new step at line #10. Edit the Command String text

to change the expression to [GetValue protoStatsPort1 ospfFullNeighbors] for the second

chassis port. Edit the value of the Return Variable column to fullNbrsPort2. Upon

completion of this step you will have created a variable containing the number of neighbors

on the second port that have reached the FULL state.

15. Highlight line #9 and line #10. Click Copy, then highlight line #10, and use Paste to create

line #11 and line #12. Edit Command String for line #11 to change its value to [GetValue

protoStatsPort1 ospfTotalSessions]. Edit the Return Variable for line #11 to change its

value to totalNbrsPort1. Upon completion of this step you will have created a variable to

contain the number of OSPF neighbors on the first port.

Figure 73. Composer OSPF Feature Test Script with IxNetwork-FT and DUT session commands

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 69

16. Edit Command String for line #12 to change its value to [GetValue protoStatsPort2

ospfTotalSessions]. Edit the Return Variable for line #12 to change its value to

totalNbrsPort2. Upon completion of this step you will have created a variable to contain the

number of OSPF neighbors on the second port.

17. Click Insert Step Below to create line #13. Click the Command Type list to change the

Command Type to Trace. Click the Command String list to open the Tcl expression

builder. Create the expression OSPF Full Neighbors P1: $fullNbrsPort1, P2: $fullNbrsPort2

by selecting the appropriate items under Test Variables and adding the additional text

needed for the debugging output message. Click Check to accept your changes. Upon

completion of this step you will have created a script command for message output of the

number of OSPF neighbors that have successfully reached the FULL state.

18. Click Insert Step Below to create line #14. Change the value of the Command Type to

Execute. Change the value of the Session column to XM2. Click the Command String

list to browse for the Transmit Start command. Browse for both your chassis ports to

populate the Port argument. Click Check to accept your changes. Upon completion of this

step you will have created a script command for starting traffic streams.

19. Click Insert Step Below to create line #15. Click the Command String list to browse for

the Transmit WaitUntilDone command. Browse for both your chassis ports to populate

the Port argument. Click Check to accept. Upon completion of this step you will have

created a script command for waiting until all traffic streams complete, for streams with a

finite end.

20. Click Insert Step Below to create line #16. Click the Command String list to browse for

the Protocol ProtocolStop command. Browse for both your chassis ports to populate the

Port argument. Browse for the protocol OSPF to populate the Protocol argument. Click

Check to accept. Upon completion of this step you will have created a script command for

terminating OSPF adjacencies.

21. Click Insert Step Below to insert a new step at line #17. Click the Command String list to

browse for the Stat Get command. Browse for the both of your chassis ports to populate

the Port argument. Browse for the dataIntegrityFrames statistic to populate the Stat

argument. Upon completion of this step you will have created a command for obtaining

traffic metrics.

22. Click Check when done with arguments for line #17. Enter the value trafficStats for the

Return Variable column. The variable trafficStats will be populated with the actual values

from IxExplorer whenever the step is executed during Playback mode. Upon completion of

this step you will have created a container variable for storing traffic metrics.

23. Click Insert Step Below to insert a new step at line #18. Click the Command String list to

browse for the Stat Get command. Browse for only the first of your chassis ports to

populate the Port argument. Browse for the dataIntegrityFrames statistic to populate the

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 70

Stat argument. Upon completion of this step you will have created a script command for

collecting the traffic metrics on the first port.

24. Click Check when done with arguments for line #18. Enter the value trafficStatsPort1 for

the Return Variable column. The variable trafficStatsPort1 is a convenience variable for

storing only the results associated with the first chassis port. Upon completion of this step

you will have created a container variable for storing traffic metrics from the first port.

25. Click Copy, highlight line #18, and then Paste to insert a new step at line #19. Edit the

Command String text to change the Port argument to the second chassis port. Edit the

value of the Return Variable column to trafficStatsPort2. The variable trafficStatsPort2 is

a convenience variable for storing only the results associated with the second chassis port.

Upon completion of this step you will have created a container variable for storing the

traffic metrics for the second port.

26. Highlight line #17 through line #19. Click Play to send the Stat Get commands to the Ixia

chassis and populate information in the variables you created. As the commands execute

status messages will appear in the Execution Errors window. Remember to click Save

periodically to save your work. Upon completion of this step you will have collected traffic

metrics and filled in the value and variable structures created in previous steps.

27. Click Insert Step Below to create line #20. Click the Command Type list to change the

Command Type to Assign. Click the Command String list to open the Tcl expression

builder. Create the expression GetValue trafficStatsPort1 dataIntegrityFrames by

expanding the trafficStatsPort1 tree item under Test Variables and double-click the

dataIntegrityFrames stat. The brackets [] may be selected from Available Operators.

Click Check to accept your changes. Enter dataFramesRcvdPort1 for the Return

Variable. Upon completion of this step you will have created a container variable for the

traffic frames received on the first port.

28. Click Copy and then Paste to insert a new step at line #21. Edit the Command String text

to change the expression to GetValue trafficStatsPort2 dataIntegrityFrames for the second

chassis port. Edit the value of the Return Variable column to dataFramesRcvdPort2. Click

Insert Step Below to create line #22. Click the Command Type list to change the

Command Type to Trace. Edit the Command String text to output Passed as a

debugging message. Upon completion of this step you will have created a container

variable for the traffic frames received on the second port.

29. Click Insert Step Below to create line #23. Click the Command Type list to change the

Command Type to WriteCSV. Click the Command String list to open the argument

builder. Specify the expression C:\FT.csv for the File Name argument. Browse for the

trafficStats item to populate the Variable argument. Click Check to accept your changes.

Upon completion of this step you will have created a script command for the output of

traffic statistics to a comma separated variable file.

Appendix A: Layer 2-3 Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 71

30. Click Disconnect to close the IxExplorer session and it will automatically create line #24

with the Command Type of StopSession. Insert a Return statement at line #25 with

Command String value set to 1. Make sure to click Save to save this version of the

IxExplorer script before proceeding. Upon completion of this step you will have

disconnected from the feature test session.

31. Click Debug to switch to the Debugger. Click the Line # column next to line #4, line #14

and line #22 to add a breakpoint that will pause the execution at each of those lines. You

may add additional breakpoints to other lines where you are interested in pausing the

execution of your script. Upon completion of this step you will have identified the locations

in the Composer script where execution will be paused upon reaching those points.

32. If you wish to disable a breakpoint, simply click Breakpoint and it will remove the fill from

the circle, indicating that the breakpoint is present, but disabled. Upon completion of this

step you will have identified any locations in the composer script where the execution

pause points can be temporarily disabled.

33. Click Play to start the execution of the test. The test will execute until it hits the first

breakpoint. You can open IxNetwork-FT and refresh the chassis view to see the

configuration that has been applied to this point. Upon completion of this step IxExplorer

will show the effects of having executed script commands in Composer.

34. Click Play to continue execution to the next breakpoint and observe the effect in

IxNetwork-FT where appropriate. Make sure that you are able to reach the breakpoint

associated with the Passed trace message on line #22 before continuing further. If you

can successfully reach this breakpoint then your script is working as expected. Click Play

to execute to the end. You can use the Global Output window to assist you in verifying the

correct execution of your script. Upon completion of this step you will have successfully

executed a feature test scenario in an automated fashion using Composer. The script may

be copied and modified to automate the feature test of other protocols.

Appendix B: Layer 4-7 Applications Automation Cookbook

PN 915-2612-01 Rev F August 2010 73

Appendix B: Layer 4-7 Applications Automation Cookbook

1. Launch the application from the Test Conductor icon. The GUI Console window will be

displayed. Test Composer is a configuration tool available in the bottom left corner of the

screen. Upon completion of this step you will have successfully accessed the Test

Conductor server via the client.

2. Click Test Composer to create a new Composer test. Click New Composer Test.

Change the Name field value to IxLoad-Lab. Leave the remaining options on this view with

their default values. Click Steps. Click Show Sessions Console to make the Capture

pane viewable. Change the Name field value to XM2. Select IxLoad from the Type list.

Upon completion of this step you will have initialized a new composer test.

3. Browse for C:/ixload-b2b-http-tput.rxf to populate the Repository File argument. Enter the

IDs of 2 ports to which you will apply IxLoad configuration into the Port List field using

Chassis(C.P1) Chassis(C.P2) notation where Chassis = IP Address or Hostname, C = card

#, P1 = port1 #, P2 = port2 #. For example: 10.200.134.170(1.5 1.6). Upon completion of

this step you will have entered all connection information required to load a default IxLoad

configuration from a file.

4. Click Connect to establish an active session to the Ixia chassis. The IxLoad session will

take ownership of the ports you provided and generate a message in the capture window

indicating success or failure. Line #1 has been automatically created in the Test Steps

window with a Command Type of StartSession. Upon completion of this step you will

have established an active application layer session.

5. Click the Insert Step Below to create line #2. Change the value of the Command Type to

Execute. Change the value of the Session column to XM2. Click the Command String

list to browse for the ApplyConfig command. Click Check when done with line #2. Upon

completion of this step you will have created a script command for applying the loaded

configuration to Ixia chassis ports.

6. Click Insert Step Below to create line #3. Click the Command String list to browse for the

StartTest command. Click Check to accept the default of False for the Force Apply

Config argument. Click Save to save your progress. Click Insert Step Below to create

line #4. Click the Command String list to browse for the WaitTestEnd command. Click

Check to accept. Upon completion of this step you will have created a script command for

starting an application layer traffic test.

Appendix B: Layer 4-7 Applications Automation Cookbook

PN 915-2612-01 Rev F August 2010 74

7. Click Insert Step Below to create line #5. Click the Command String list to browse for the

GetRunFiles command. Browse for C:/ to populate the Destination Directory argument.

Click Check to accept. Upon completion of this step you will have created a command to

output the comma separated value files that contain application traffic metric to a user

defined location.

8. Click Insert Step Below to create line #6. Click the Command String list to browse for the

ReleaseConfig command. Click Check to accept. Highlight line #2. Click Play to send the

ApplyConfig command to the Ixia chassis. Upon completion of this step you will have

activated the application layer configuration on the Ixia chassis ports.

Figure 74. Composer HTTP Throughput Application Test Script with IxLoad session commands

9. Highlight line #6. Click Insert Step Above to insert a new step at line #6. Change the

value of the Command Type to Execute. Change the value of the Session column to

XM2. Click the Command String list to browse for the GetStatValues command. Upon

completion of this step you will have created a command to collect application traffic

metrics.

Appendix B: Layer 4-7 Applications Automation Cookbook

PN 915-2612-01 Rev F August 2010 75

10. Browse for HTTP_Client_HTTP_DS_ClientTraffic1@ClientNetwork1 to populate the Stat

Source argument. Browse for {Run State} {HTTP Throughput} to populate the Stat Names

argument. Choose Custom from the Selection list. Specify * for wildcard in the Selected

Row(s) argument. Click Check to accept. Enter the value httpStats for the Return

Variable column. Upon completion of this step you will have identified the application

traffic metrics to be collected.

11. Highlight line #3, line #4 and line #6. Click Play to send the StartTest, WaitTestEnd, and

GetStatValues commands to the Ixia chassis and populate information in the variable you

created. Upon completion of this step you will have executed the application traffic test and

collected traffic metrics into a container variable.

12. Highlight line #6. Click the Insert Step Below to insert a new step at line #7. Click the

Command Type list to change the Command Type to Assign. Click the Command

String list to open the Tcl expression builder. Upon completion of this step you will have

created a script line to create a new variable.

13. Create the expression [GetValue httpStats HTTP_Throughput Run_State SU]. You may

type the expression directly into the bottom evaluation window if you are familiar with Tcl

syntax. If not, you may expand the composite variable listed in the Test Variables window

and right-click to statistics to apply a filter based on other statistics, as well as choose the [

] operator from the Available Operators list. Click Check to accept your changes. Enter

the value httpSUTput for the Return Variable column. Upon completion of this step you

will have populated a new variable with the application traffic throughput metrics that

correspond to the steady state execution of the application traffic configuration.

14. Click the Insert Step Below to insert a new step at line #8. Change the value of the

Command Type to Trace. Click the Command String list to open the Tcl expression

builder. Create the expression $httpSUTput by selecting the appropriate item under Test

Variables. Upon completion of this step you will have created a script command to output

the steady state application throughput.

15. Highlight lines #3 through 8. Click Place Inside For to indent these steps inside a new For

loop beginning at line #3 and ending at line #11. Click the Command String list to open

the For loop expression builder. Enter tputMBps for the value of the Assign to variable

field. Select SET from the Loop type list. Enter two space separated SET values into the

Values list, 15 20. Click Check to accept your changes. Upon completion of this step you

will have constructed a basic iteration over multiple application throughput values.

16. Highlight line #3. Click Insert Step Below to insert a new step at line #4. Change the value

of the Command Type to Execute. Change the value of the Session column to XM2.

Enter the expression set value $tputMBps directly into the Command String. Upon

completion of this step you will have copied the iterative application throughput value into a

variable used by the application session.

Appendix B: Layer 4-7 Applications Automation Cookbook

PN 915-2612-01 Rev F August 2010 76

17. Click Insert Step Below to insert a new step at line #5. Change the value of the

Command Type to Execute. Change the value of the Session column to XM2. Click the

Command String list to clear the Use Composer Variables check box. Click Check to

accept your change. On completion of this step, you will have identified to the application

session that the variable should be evaluated within the local context of the application

session itself.

18. Enter the expression $::Test clientCommunityList(0).config –objectiveValue $value directly

into the Command String. Click Insert Step Below to insert a new step at line #6.

Change the value of the Command Type to Execute. Change the value of the Session

column to XM2. Upon completion of this step you will have created a command to change

the current application throughput objective value to the next value in the iteration over

throughput values.

19. Click the Command String list to clear the Use Composer Variables check box. Click

Check to accept your change. Enter the expression $::Test clientCommunityList(0).cget –

objectiveValue directly into the Command String. Upon completion of this step you will

have created a command to retrieve the changed value of the application throughput

objective value for verification purposes.

20. Click Disconnect to close the IxLoad session; line #15 will be created with a Command

Type of StopSession. Make sure to click Save to save this version of the IxLoad script

before proceeding. Upon completion of this step you will have terminated the application

traffic session.

21. Click Insert Step Below to create line #16. Click the Command Type list to change the

Command Type to Trace. Edit the Command String text to output Passed as a

debugging message. Insert a Return statement at line #17 with the Command String

value set to 1. Upon completion of this step you will have identified the exit point for the

composer script when execution completes successfully.

22. Highlight line #14 through line #17. Click Copy, highlight line #13, and then Paste to create

line #13 through line #16. Edit Command String for line #15 to change its value to Failed.

Edit Command String for line #16 to change its value to 0. Remember to click Save

periodically to save your work. Upon completion of this step you will have identified the exit

point for the composer script when the execution fails to complete with expected results.

23. Highlight lines #13 through #16. Click Place Inside If to indent these steps inside a new

line loop beginning at line #13 and ending at line #18. Enter the expression $httpTput <

0.98 * $tputMBps * 1e6 directly into the Command String. Upon completion of this step

you will have specified an expression requiring that all steady state throughput needs to be

no more than two percent less than the current iterative value being attempted.

24. Click Insert Step Below to create line #14. Click the Command Type list to change the

Command Type to Trace. Edit the Command String text to output ! $httpTput < [expr

0.98 * $tputMBps * 1e6] as a debugging message. Upon completion of this step you will

Appendix B: Layer 4-7 Applications Automation Cookbook

PN 915-2612-01 Rev F August 2010 77

have created an error message indicating that a steady state throughput value was more

than two percent less than the current iterative value being attempted.

25. Highlight lines #13 through #19. Click Place Inside For to indent these steps inside a new

line loop beginning at line #13 and ending at line #21. Build the expression httpTput in

{$httpSUTput} to be evaluated on each iteration of the loop. Upon completion of this step

you will have created an iterative loop to collect all of the steady state throughput values

that were returned as a list by the stat collection.

26. Click Debug to switch to the debugger and set breakpoints at line #18 and line #25. This

will allow you to monitor the exit conditions of your test script. Within Test Composer, the

Global Output view enables you to monitor progress for all sessions in one window. Upon

completion of this step you will have identified execution pause points to determine which

exit point, success or failure, the script will pass through.

27. Click Play to start the execution of the test. The test will execute until it hits one of your two

breakpoints. Make sure that you are able to reach the breakpoint associated with the

Passed trace message on line #25. If you can successfully reach this breakpoint, then

your script is working as expected. Click Play to execute to the end. You can use the

Global Output window to assist you in verifying the correct execution of your script. Upon

completion of this step you will have executed an application traffic test configuration in an

automated fashion using Composer. The Composer script may be copied and modified to

load alternate application traffic configuration files and collect alternate stats as required by

other protocol traffic types.

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 79

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook

This cookbook is provided to show how to approach creating an automated script by using

Test Composer and the IxN2X plug-in. The basic methodology can be applied to almost

any sort of test. The high-level steps include the following:

1. Configure the IxN2X using the graphical user interface and save the configuration.

2. Using the automation, load the configuration.

3. Start the protocols and wait for them to settle.

4. Use the protocol state statistics to validate that the protocols are up.

5. Configure the traffic stats that you want to collect.

6. Start the traffic and wait for some period of time.

7. Stop the traffic and wait for the packets to complete their transmission.

8. Measure the statistics and validate that the measurements are within the acceptable

range.

9. Repeat the steps as necessary with various changes to the configuration as required.

For example, variations in frame size and transmission rate are common ways to vary

the configuration.

Following are the steps used to perform a basic PPPoE feature test.

1. Start the application from the Test Conductor Icon. The GUI Console window appears.

Test Composer is a configuration tool available in the bottom left corner of the screen.

Click Test Composer to create a new Composer test. Click New Composer Test. Open

the File-Properties to change the Name field value to IxN2X-Lab. Leave the remaining

options on this view with their default values. Close the Properties dialog. You have now

created a new composer test.

2. The first stage of building the test is to establish a connection to the controller. This

involves configuring and connecting a Test Composer session to the IxN2X Controller.

a. In the Sessions Tab section of the editor, select IxN2X from the Type list. Change

the Name field value to IxN2X. Enter the IP Address or Hostname for your controller

in the IxN2X controller hostname or IP Address field. Select the version of

software that you want to use or leave it as ’Latest’ to select the most recent version

of IxN2X software installed on the controller. Enter the IxN2X Test Session Label to

the name that you want to use. The IxN2X session can establish a new session on

the controller or it can reconnect to an existing session. Set the Reuse existing test

session to yes if you want to reconnect to an existing session. If no session exists

with the name you entered, one will be created for you. You have now entered all the

information required before establishing a feature test session.

b. Click Connect to establish an active session to the IxN2X controller. The session will

generate a message in the capture window indicating success or failure. Line #1 has

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 80

been automatically created In the Test Steps window with a Command Type of

StartSession. You are now actively connected to a feature test session.

3. The second phase is to load the test configuration. The configuration of the IxN2X is still

done using the IxN2X GUI. In this case, the configuration involves setting up a standard

PPPoE configuration using two ports. After you have created and saved the configuration,

you are ready to program Test Composer to load that configuration automatically.

Figure 75. Configure PPPoE with IxN2X

a. Click Insert Step Below to create another step. Change the value of the Command

Type to Execute. Change the value of the Session column to IxN2X. Click the

Command String list to browse for the Session LoadConfigurationFile command.

Browse for the configuration file that you want to load. Enter the Target ports field

with the ports that you want to use during this test. Use the standard IxN2X syntax

such as 101/1 101/2. Or you can leave it blank if the configuration has the ports that

you want to use already saved. Click Ok when done with the step. On completing

this step, you will have created a script command to load a configuration on the

controller.

b. Highlight the command that you just created in the previous step and click Play to

push the configuration to the ports. On completing this step, the port configurations

will now be loaded on the ports.

c. For good measure, we recommend you to include a command to send some ARP

packets to establish connectivity between the ports. Insert another execute

command after the LoadConfigurationFile command and select Link RunArp with

the PortList set to All and the EnableSelfPaced set to yes. Highlight the command

and click Play.

4. The next phase is to build a command that enables the protocol emulations.

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 81

a. Add another Execute command and select Protocol PppAction. Next, select the

appropriate values from the lists provided by the Command Editor. For the PortList,

select the port with the PPP Client emulation configured, for example, ’101/1,’ Action

set to ’Enable,’ ProtocolEntity set to ’PPP over Ethernet Client,’, and ItemList set to

’PPP over Ethernet Client 1.’

b. Next, add a sleep command to allow the protocol to settle before proceeding to the

next command. Fifteen seconds is a nominal value, but more or less may be

required depending on your configuration.

c. Add another Execute command. This command will refresh the Session IDs. Use the

Protocol PppAction command again with the same settings as earlier except this

time the Action is set to ’Open Connections.’

d. Again, we recommend you to include another sleep command to allow the system to

settle.

5. After the sessions have been refreshed, it is good to validate this.

a. Using the Execute command, add a GetProtocolStateStatistics for the port running

the PPPoE client, in this example, that would be 101/1. Because the established

sessions is the metric to be verified, include Established as one of the statistics to

query. Make sure to provide a return variable to receive the statistics, such as

’PPP_Stats.’

b. If multiple statics are queried, the GetValue command is a good way to filter out the

other stats so that the specific stat can be verified. Add a GetValue command to the

test where the stat to be extracted is the Established sessions and filtered by the

port 101/1. Again, provide a return variable to receive the value from the GetValue

command.

c. Verify that the number of established sessions match what the test is configured to

create. In this test, that value is 100. Using the If command, compare the variable

that contains the number of established sessions created in the previous step to the

number of expected established sessions, in this case, 100. If the two do not match,

execute the necessary commands to stop the test and flag the test as failed by

returning the value 0 using the Return command.

6. If the two values do match, the test can proceed. The next command to execute is to

update the mesh stream group.

a. Use the command Traffic UpdateMeshStreamGroup and select the traffic mesh

from the list. In this case, it is ’TrafficMesh 1.’

b. Insert a Sleep 15 seconds command.

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 82

7. To verify that the protocol is working, traffic needs to be transmitted. To verify that the

traffic is being transmitted and received, configure the IxN2X to collect the relevant stats. In

this case, the stats of interest are TEST_PACKETS_TRANSMITTED and

TEST_PACKETS_RECEIVED on both ports.

a. Add another Execute command and use the command string Statistics

ConfigurePortView. Select for the portList both ports, in this case 101/1 and 101/2.

Finally, pick the relevant stats such as TEST_PACKETS_RECEIVED and

TEST_PACKETS_TRANSMITTED. Give the view a name, one that will be used

later to get the stats. In this example, the name Stats is used.

8. Begin sending traffic.

a. Using the Execute command, create a Traffic StartTrafficEngine with a max wait

time big enough to allow the IxN2X to start the traffic engine. Ten seconds is a

typical time to wait. If the traffic engine does not begin within that time, an error

appears.

b. Wait for some time for the traffic to be sent. In this example, 30 seconds is sufficient

to prove that traffic is successfully sent to the hosts.

c. Using the Execute command, create a Traffic StopTrafficEngine with a max wait

time big enough to allow the IxN2X to start the traffic engine. Ten seconds is a

typical time to wait. If the traffic engine does not stop within that time, an error

appears.

9. Now is the time to collect the traffic statistics that were configured in the earlier step.

These stats will be used to determine whether or not the test passed by comparing the

transmitted packets to the received packets.

a. Using the Execute command, create a Statistics GetView command with the ’Stats’

view name. The view may have more stats that are needed for the test, because

additional stats may be useful to have logged with the results of the test, but are not

necessary for establishing success or failure. So select just the stats from the view

that will be used to measure success. In this case, select the

TEST_PACKETS_RECEIVED and TEST_PACKETS_TRANSMITTED statistics for

both ports in the test.

b. Using the same sort of GetValue command as earlier, get the received packets from

the receiving port (101/2 in this case) and the transmitted packets from the send port

(101/1 in this case).

c. Compare the two values using the If command. If the packets received is less than

packets transmitted, fail the test by creating a Return command with the value 0.

d. If the two values match, use a Return command with the value 1 to indicate that the

test passed.

Appendix C: IxN2X PPPoE Feature Test Automation Cookbook

PN 915-2612-01 Rev F August 2010 83

10. Throughout the test, it may be advantageous to have some messages that display data

used or collected. The Trace command is useful for this purpose. Messages can be

displayed to the user to explain the progress of the test. In addition, good programming

practices include taking groups of steps that are frequently executed together and

combining them into functional blocks called procedures. In this example, a procedure

called ’StopTest’ is used to clean up the test before exiting. The StopTest procedure (not

shown) includes steps to disconnect the Composer test from the IxN2X by using the

StopSession command and the Trace command to display to the user the reason for

stopping the test.

Figure 76. Composer PPPoE Feature Test Script with IxN2X session commands

PN 915-2612-01 Rev F August 2010 85

Contact Ixia

Corporate Headquarters
Ixia Worldwide Headquarters
26601 W. Agoura Rd.
Calabasas, CA 91302
USA
+1 877 FOR IXIA (877 367 4942)
+1 818 871 1800 (International)
(FAX) +1 818 871 1805
sales@ixiacom.com

Web site: www.ixiacom.com
General: info@ixiacom.com
Investor Relations: ir@ixiacom.com
Training: training@ixiacom.com
Support: support@ixiacom.com
+1 877 367 4942
+1 818 871 1800 Option 1 (outside USA)
online support form:
http://www.ixiacom.com/support/inquiry/

EMEA
Ixia Technologies Europe Limited
Clarion House, Norreys Drive
Maiden Head SL6 4FL
United Kingdom
+44 1628 408750
FAX +44 1628 639916
VAT No. GB502006125
salesemea@ixiacom.com

Renewals: renewals-emea@ixiacom.com
Support: support-emea@ixiacom.com
+44 1628 408750
online support form:
http://www.ixiacom.com/support/inquiry/?location=em
ea

Ixia Asia Pacific Headquarters
21 Serangoon North Avenue 5
#04-01
Singapore 5584864
+65.6332.0125
FAX +65.6332.0127
Support-Field-Asia-Pacific@ixiacom.com

Support: Support-Field-Asia-Pacific@ixiacom.com
+1 818 871 1800 (Option 1)
online support form:
http://www.ixiacom.com/support/inquiry/

mailto:Support-Field-Asia-Pacific@ixiacom.com
www.ixiacom.com
mailto:info@ixiacom.com
mailto:ir@ixiacom.com
mailto:training@ixiacom.com
mailto:support@ixiacom.com
http://www.ixiacom.com/support/inquiry/
mailto:salesemea@ixiacom.com
renewals-emea@ixiacom.com
support-emea@ixiacom.com
http://www.ixiacom.com/support/inquiry/?location=emea
http://www.ixiacom.com/support/inquiry/?location=emea
mailto:Support-Field-Asia-Pacific@ixiacom.com
mailto:Support-Field-Asia-Pacific@ixiacom.com
http://www.ixiacom.com/support/inquiry/

	How to Read this Book
	Dear Reader
	Introduction
	Test Case: DUT CLI Automation by Using Test Composer
	Overview
	Objective
	Setup
	Step-by-Step Instructions

	Test Case: Ixia Traffic Generator Automation by Using Test Composer
	Overview
	Objective
	Setup
	Step-by-Step Instructions

	Test Case: Leveraging Test Automation in a Vendor Selection Process
	Overview
	Objective
	Setup
	Step-by-Step Instructions
	Test Variables
	Test Tool Variables
	DUT Test Variables

	Results Analysis
	Troubleshooting and Diagnostics
	Conclusions

	Test Case: Leveraging SNMP Verification in an End-to-End Automation Process
	Overview
	Objective
	Setup
	Step by Step instructions
	Test Variables
	Test Tool Variables
	DUT Test Variables

	Results Analysis
	Troubleshooting and Diagnostics
	Conclusions

	Appendix A: Layer 2-3 Feature Test Automation Cookbook
	Appendix B: Layer 4-7 Applications Automation Cookbook
	Appendix C: IxN2X PPPoE Feature Test Automation Cookbook
	Contact Ixia

